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Equilibrium and nonequilibrium states in thermostated Gledzer-Ohkitani-Yamada shell models
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We study Gledzer-Ohkitani-Yamada shell models with heat reservoirs. Time-reversible Nose´-Hoover dy-
namics are used for the heat reservoirs. Both equilibrium and nonequilibrium cascade states are obtained by
changing the heat reservoirs.

PACS number~s!: 47.20.Ky, 05.70.Ln
-
e
-

av

s

b

e
th

am

a
fo
e

qu
al

t
the
nor

e-

per-
n-
the

t
in

the
-

on
t

Gledzer-Ohkitani-Yamada~GOY! shell models were pro
posed as simple dynamical models of the energy cascad
well-developed turbulence@1,2#. The models have been stud
ied to understand the intermittency and multifractal beh
iors of energy dissipation@3–6#. A GOY shell model has the
form

S d

dt
1nki

2Dui5 i ~aikiui 11* ui 12* 1biki 21ui 21* ui 11*

1ciki 22ui 21* ui 22* !1 f d i ,4 , ~1!

wherei 51, . . . ,N,ki5k02i , f is an external forcing, andn is
the viscosity. The boundary conditions areb15bN5c15c2
5aN215aN50. The coefficients of the nonlinear term
must satisfy

ai1bi 111ci 1250

in order to satisfy the conservation of energy( i uui u2 when
f 5n50. If ai51,bi52b, andci54c are assumed, Eq.~1!
becomes

S d

dt
1nki

2Dui5 ik i~ui 11* ui 12* 1bui 21* ui 11* 1cui 21* ui 22* !

1 f d i ,4 , ~2!

where the parametersb and c are chosen asb52d/2 and
c52(12d)/4 owing to the conservation of energy, andd is
a parameter that changes the interaction among the neigh
ing shells.

On the other hand, Nose´-Hoover dynamical systems hav
been studied to understand nonequilibrium states from
viewpoint of chaotic dynamical systems@7,8#. Lepri, Livi,
and Politi studied heat transport in the Fermi-Past-Ul
chain with time-reversible thermostats@9#.

The GOY shell model has the form of a chain with
nonlinear interaction and the energy is transported as a
ward cascade. We study a GOY shell model with tim
reversible thermostats to study the equilibrium and none
librium states from the viewpoint of chaotic dynamic
systems. The model equation is

dui

dt
5 ik i~ui 11* ui 12* 1bui 21* ui 11* 1cui 21* ui 22* !,
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i 5n11, . . . ,N2n ~3!

and

dui

dt
5 ik i~ui 11* ui 12* 1bui 21* ui 11* 1cui 21* ui 22* !2ziui ,

dzi

dt
5dki~ uui u22Ti ! for i 51, . . . ,n

and N2n11, . . . ,N, ~4!

where thezi ’s are the thermal variables,Ti ’s are variables
that can be interpreted as the temperature of thei th shell, and
d expresses the response time. The firstn shells and the las
n shells interact with heat reservoirs. The equations for
intermediate shells have neither external forcing terms
energy dissipation terms. The equations of motion have tim
reversal symmetry with respect tot→2t,ui→2ui ,zi→
2zi . The entropy production rate is the summation ofzi . If
the temperatureTi of all the heat reservoirs isT, the Maxwell
distribution

P~u,z!} expS 2(
i

uui u2/TDexpS 2(
i

~zi
2/dkiT! D ~5!

is a stationary distribution for time evolution by Eqs.~3! and
~4!, since

(
i

]

]ui
~ u̇i P!1(

i

]

]ui*
~ u̇i* P!1(

i

]

]zi
~ żi P!50, ~6!

where the overdot denotes the time derivative. We have
formed a numerical simulation to find a statistically statio
ary state of the thermostated GOY model. Figure 1 is
result of a numerical simulation forN516, d50.05, k0
5224, n53, T50.01, andd520. We have assumed tha
the first and last three shells interact with heat reservoirs
order to reduce the influence of the period-3 structure for
GOY shell model. Figure 1~a! displays the plot of the aver
aged energŷ uui u2& for each shell vs ln(ki)5ln(k02

i). The
dashed line denoteŝuui u2&5T. Equipartition of energy is
approximately attained. Figure 1~b! displays a semilogarith-
mic plot of the numerically obtained histogramP(uui u2) for
i 510 and it is compared with the Gaussian distributi
P(uui u2)5exp(2uuiu2/T)/T. This numerical result shows tha
7520 ©2000 The American Physical Society
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the Maxwell distribution is realized as a stationary state
deterministic time evolution according to Eqs.~3! and ~4!.

For d.1, Eq. ~3! has another positive-definite conserv
quantity ( iki

2uui u2 called the enstrophy in addition to th
energy. A distribution of the form

P~u!}expS 2(
i

ki
2uui u2/TD ~7!

is a stationary distribution of Eqs.~3! and~4!, if the reservoir
temperatures are assumed to beTi5T/ki

2 . We have per-
formed a numerical simulation to check whether this dis
bution is realized in the time evolution of Eqs.~3! and ~4!.
Figure 2 shows a numerical result forN518, d51.25, k0
5224, n53, Ti5222(i 21), andd520. Figure 2~a! displays a
logarithmic plot of the averaged energy vski . The dashed
line denoteŝ uui u2&5222(i 21). The averaged energy obey
^uui u2&;ki

22 , that is, the equipartition of enstrophy^ki
2uui u2&

is satisfied. The relation̂uui u2&;ki
22 implies that the norma

energy spectrum satisfieŝE(k)&;^uui u2&/ki}k23, which
corresponds to the Batchelor-Kraichnan spectrum. Fig
2~b! displays a semilogarithmic plot of a numerically o
tained histogram ofP(uui u2) vs uui u2/Ti for i 510 with Ti
52218. The Maxwell distribution is approximately obtaine
in this simulation.

The stationary distributions~5! and ~7! express equilib-
rium states, in which the average rate of entropy produc

FIG. 1. ~a! Averaged energŷuui u2& vs ln(ki) for Eqs.~3! and~4!
with N516,d50.05,n53,Ti50.01, andd520. ~b! Semilogarith-
mic plot of the histogramP(uui u2) for i 510 and the Gaussian dis
tribution P(uui u2)5exp(2uuiu2/Ti)/Ti .
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is zero. We have checked numerically that the averaged
tropy production rate is nearly zero for the equilibriu
states. For our dynamical system, this means that the ave
expansion rate of the phase space volume is zero. We
obtain nonequilibrium states by changing the temperat
distribution of the heat reservoirs. This corresponds to
situation where a chain with a nonlinear interaction is
contact with thermal reservoirs of different temperatures
both ends of the chain. Figure 3 shows a numerical result
N521, d51.5, n53, d510, and temperatureTi
5224(i 21)/3. Equation~3! has two types of static solution
~fixed points! characterized by scaling exponents:~1! the
Kolmogorov-like solutionui;ki

21/3 and ~2! ui;ki
2a with

a5@2 log2(d21)11#/3. For d51.5, a52/3. The reservoir
temperatureTi}222a( i 21) is consistent with the average
energy of the second scaling solution. Figure 3~a! displays a
logarithmic plot of the numerically obtained averaged ene
vs ki . The dashed line denotes^uui u2&5224(i 21)/3. The av-
eraged energy obeyŝuui u2&}ki

24/3, which implies that the
enstrophy-type cascading solution is approximately realiz
The averaged entropy production rate^(zi&;28.7 is defi-
nitely positive, which implies that the system is in a noneq
librium stationary state. That is, the distribution is stationa
but there is a flow of enstrophy. Figure 3~b! displays a semi-
logarithmic plot of a numerically obtained histogram
P(uui u2) vs uui u2/Ti for i 516 with Ti52220. This distribu-
tion is also approximated at the Gaussian distribut
P(uui u2)}exp(2uuiu2/Ti)/Ti with Ti5224(i 21)/3. This non-

FIG. 2. ~a! Averaged energy ln(^uuiu2&) vs ln(ki) for Eqs.~3! and
~4! with N518,d51.25,n53,Ti5222(i 21), and d520. ~b! Semi-
logarithmic plot of the histogramP(uui u2) for i 510 and the Gauss
ian distributionP(uui u2)5exp(2uuiu2/Ti)/Ti with Ti52218.
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equilibrium state may be interpreted as a local equilibri
state, since the probability distribution of each shell has
form of the Maxwell distribution. We have calculated th
velocity structure functions ^uui uQ&;ki

2zQ for Q
52,3, . . .,10. Figure 3~c! displays the numerically obtaine
exponentzQ vs Q. The exponent obeyszQ;(2/3)Q and this
implies that there are no multifractal characteristics. T
Maxwell distribution is a good approximation for the statio
ary distribution.

Figure 4 shows a numerical result forN521, d50.5, n
53, d50.1, and temperatureTi5222(i 21)/3. The tempera-
ture profile of the heat reservoirs is consistent with
Kolmogorov-like solution. Figure 4~a! displays a logarithmic

FIG. 3. ~a! Averaged energy ln(^uuiu2&) vs ln(ki) for Eqs.~3! and
~4! with N521,d51.5,n53,Ti5224(i 21)/3, and d510. ~b! Semi-
logarithmic plot of the histogramP(uui u2) for i 516 and the Gauss
ian distributionP(uui u2)5exp(2uuiu2/Ti)/Ti with Ti52220. ~c! Ex-
ponentzQ for the structure functions. The dashed line denoteszQ

52Q/3.
e

e

e

plot of the numerically obtained averaged energy vski . The
dashed line denotes^uui u2&5222(i 21)/3. The averaged energ
obeys^uui u2&}ki

22/3. The corresponding energy spectrum
E(k)}^uui u2&/ki;k25/3. That is, the Kolmogorov spectrum
is approximately realized in this numerical simulation. Fi
ure 4~b! displays a semilogarithmic plot of a numerical
obtained histogram ofP(uui u2) vs uui u2/Ti for i 516 with
Ti52210 and it is compared with the Gaussian distributi
P(uui u2)}exp(2uuiu2/Ti)/Ti with Ti5222(i 21)/3. For these pa-
rameter values, the nonequilibrium stationary distribution
far from the Maxwell distribution and has a long tail. Ther
fore, the nonequilibrium stationary state cannot be int
preted as a local equilibrium state. The average entr

FIG. 4. ~a! Averaged energy ln(^uuiu2&) vs ln(ki) for Eqs.~3! and
~4! with N521,d50.5,n53,Ti5222(i 21)/3, andd50.1. ~b! Semi-
logarithmic plot of the histogramP(uui u2) for i 516 and the Gauss
ian distributionP(uui u2)5exp(2uuiu2/Ti)/Ti with Ti52210. ~c! Ex-
ponentzQ for the structure functions. The dashed line denotes
random b model zQ5Q/32 log2$12x1x(1/2)12Q/3% with x
50.12 and the dotted line denoteszQ5Q/3.
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production rate is 419.5, which is considerably larger than
the case of Fig. 3. Figure 4~c! displays the numerically ob
tained exponentzQ vs Q. The exponentzQ deviates from
Q/3 and this indicates a multifractal property of the ener
cascading solution. Our exponentzQ is slightly different
from that of the randomb model zQ5Q/32 log2$12x
1x(1/2)12Q/3% with x50.12 ~shown by the dashed curve!,
which was obtained by Jensen, Paladin, and Vulpiani@3# for
the original GOY model~1!.

To summarize, we have proposed a thermostated G
shell model and performed numerical simulations. We h
obtained an equilibrium state satisfying energy equipartit
and an equilibrium state satisfying enstrophy equipartiti
By changing the temperature profile of the heat reservo
we have obtained nonequilibrium states, one of which m
n

y

Y
e
n
.
s,
y

be interpreted as a local equilibrium state and the other
nonequilibrium state far from equilibrium. Cascading sta
are realized in the nonequilibrium states. For temperat
profiles inconsistent with static cascading solutions, we h
obtained various results, which we have not understood w
For example, if the temperature profile of the heat reserv
is assumed to beTi5222(i 21)/3 for the parameter values o
Fig. 3, we have not obtained the averaged energy^uui u2&
;222(i 21)/3, but the logarithmic plot of the averaged ener
vs ki is curved and has a steeper slope fori .10.

The thermostated model gives a statistical-mechan
viewpoint to the GOY model for turbulence. It may also b
another useful model for understanding nonlinear and n
equilibrium energy transport from the viewpoint of chao
dynamical systems.
D

ev.
@1# E. B. Gledzer, Dokl. Akad. Nauk. SSSR209, 1046 ~1973!
@Sov. Phys. Dokl.18, 216 ~1973!#.

@2# M. Yamada and K. Ohkitani, J. Phys. Soc. Jpn.56, 4210
~1987!.

@3# M. H. Jensen, G. Paladin, and A. Vulpiani, Phys. Rev. A43,
793 ~1991!.

@4# L. Kadanoff, D. Lohse, J. Wang, and R. Benzi, Phys. Fluids7,
617 ~1995!.
@5# L. Biferale, A. Lambert, R. Lima, and G. Paladin, Physica
80, 105 ~1995!.

@6# P. D. Ditlevsen and I. A. Mogensen, Phys. Rev. E53, 4785
~1996!.

@7# W. G. Hoover, Phys. Rev. A31, 1695~1985!.
@8# D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. R

Lett. 71, 2401~1993!.
@9# S. Lepri, R. Livi, and A. Politi, Physica D119, 140 ~1998!.


