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Equilibrium and nonequilibrium states in thermostated Gledzer-Ohkitani-Yamada shell models
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We study Gledzer-Ohkitani-Yamada shell models with heat reservoirs. Time-reversibleHuoser dy-
namics are used for the heat reservoirs. Both equilibrium and nonequilibrium cascade states are obtained by
changing the heat reservoirs.

PACS numbeps): 47.20.Ky, 05.70.Ln

Gledzer-Ohkitani-YamadéGQOY) shell models were pro- for
posed as simple dynamical models of the energy cascade in
well-developed turbulendd,,2]. The models have been stud-
ied to understand the intermittency and multifractal behavgnd
iors of energy dissipatiof8—6]. A GOY shell model has the

i=n+1,...N—n 3)

form dy, .
d—tl:'ki(Ui*+1Ui*+2+bUi*—lui*+1+CUr—1Ui*72)_ZiUi ,

d
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+eiki Ui U ) + 16 4, ()
_ and N—n+1,... N, (4)

wherei=1, ... N,kj=Kkq2', fis an external forcing, andis

where thez;’s are the thermal variableg,’s are variables
that can be interpreted as the temperature oftthshell, and

d expresses the response time. The firshells and the last

n shells interact with heat reservoirs. The equations for the
intermediate shells have neither external forcing terms nor
energy dissipation terms. The equations of motion have time-
reversal symmetry with respect to——t,u;— —u;,z;—
—z;. The entropy production rate is the summatiorgof If

the temperatur@&; of all the heat reservoirs i§, the Maxwell

the viscosity. The boundary conditions dg=by=c,;=c,
=ayn_1=an=0. The coefficients of the nonlinear terms
must satisfy

ajthi 1 +¢ =0

in order to satisfy the conservation of ener®yu;|?> when
f=v=0. If a;=1b;=2b, andc;=4c are assumed, Eql)

becomes distribution
d .
T vk | Ui =ik (U, Uf, o, HoUR jul g Feuful ) P(u,z)e exp{ —Z |ui|2/T)exp( —Z (z?/dkﬁ)) (5)
+16 4, @  isa stationary distribution for time evolution by E¢8) and
(4), since

where the parametets and c are chosen ab=—6/2 and

c=—(1-6)/4 owing to the conservation of energy, afids J . a .. J .

a parameter that changes the interaction among the neighbor- 2| E(Uip)ﬂin E(ui P)+Z - (zP)=0, (6)
ing shells. ' i '

On the other hand, Nosidoover dynamical systems have \here the overdot denotes the time derivative. We have per-
been studied to understand nonequilibrium states from theyymed a numerical simulation to find a statistically station-

viewpoint of chaotic dynamical systenf$,8]. Lepri, Livi,  ary state of the thermostated GOY model. Figure 1 is the
and Politi studied heat transport in the Fermi-Past-Ulanyesult of a numerical simulation foN=16, 5=0.05, k,
chain with time-reversible thermostd]. =274 n=3, T=0.01, andd=20. We have assumed that

The GOY shell model has the form of a chain with athe first and last three shells interact with heat reservoirs in
nonlinear interaction and the energy is transported as a fogrger to reduce the influence of the period-3 structure for the
ward cascade. We study a GOY shell model with time-Goy shell model. Figure (&) displays the plot of the aver-
reversible thermostats to study the equilibrium and nonequizgeq energy(|u;|2) for each shell vs I)=In(k,2). The
librium states from the viewpoint of chaotic dynamical yashed line denotegu;|2)=T. Equipartition of energy is

systems. The model equation is approximately attained. Figurgt) displays a semilogarith-
mic plot of the numerically obtained histogra{(|u;|?) for
du i=10 and it is compared with the Gaussian distribution

— * * * * * *
—7 =ik (U Ul o bU Uf - eu Ui y),

dt P(|u;|?) =exp(—|u|¥T)/T. This numerical result shows that
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FIG. 1. (a) Averaged energy|u;|2) vs In(k) for Eqs(3) and(4) FIG. 2. (a) Averaged energy Igju?) vs Ink;) for Egs.(3) and

with N=16,6=0.05n=3,T;=0.01, andd=20. (b) Semilogarith-  (4) with N=18,6=1.25n=3,T;=2"20"1 andd=20. (b) Semi-
mic plot of the histogranP(|u;|?) for i=10 and the Gaussian dis- logarithmic plot of the histograr®(|u;|?) for i =10 and the Gauss-
tribution P(|u;|?) =exp(|u|4T)H/T, . ian distributionP(|u;|2) = exp(—|u|%T;)/T; with T;=2"18,

the Maxwell distribution is realized as a stationary state iniS zero. We have checked numerically that the averaged en-
deterministic time evolution according to Ed8) and (4). tropy production rate is nearly zero for the equilibrium
For 5>1, Eq.(3) has another positive-definite conserved states. For our dynamical system, this means that the average

quantity =;k?u;|? called the enstrophy in addition to the €xpansion rate of the phase space volume is zero. We can
energy. A distribution of the form obtain nonequilibrium states by changing the temperature

distribution of the heat reservoirs. This corresponds to the
situation where a chain with a nonlinear interaction is in
P(u)ocexr< -> ki2|ui|2/T> (7)  contact with thermal reservoirs of different temperatures at
: both ends of the chain. Figure 3 shows a numerical result for
N=21, 6=15, n=3, d=10, and temperatureT,
is a stationary distribution of Eq¢3) and(4), if the reservoir =240~ Equation(3) has two types of static solution
temperatures are assumed to Be=T/k?. We have per- (fixed points characterized by scaling exponentd) the
formed a numerical simulation to check whether this distri-Kolmogorov-like solutionuj~k; 3 and (2) u;~k; “ with
bution is realized in the time evolution of Eq®) and (4). a=[—log,(6—1)+1)/3. For §=1.5, «=2/3. The reservoir
Figure 2 shows a numerical result fbi=18, 6=1.25,Kky  temperatureT;<2 2%0~1) is consistent with the averaged
=274 n=3, T;=2"20"1 andd=20. Figure 2a) displays a energy of the second scaling solution. Figufe) Zlisplays a
logarithmic plot of the averaged energy ks. The dashed |ogarithmic plot of the numerically obtained averaged energy
line denotes(|u;|?)=2"20"1). The averaged energy obeys vs k;. The dashed line denotéf;|2)=2"40-% The av-
(Jui|?~k 2, that is, the equipartition of enstropkig’|u;|?)  eraged energy obeysu;|2)eck*3, which implies that the
is satisfied. The relatio|u;|?)~k; 2 implies that the normal enstrophy-type cascading solution is approximately realized.
energy spectrum satisfieE(k))~(|ui|?)/ki<k 3, which  The averaged entropy production rgtgz)~28.7 is defi-
corresponds to the Batchelor-Kraichnan spectrum. Figureitely positive, which implies that the system is in a nonequi-
2(b) displays a semilogarithmic plot of a numerically ob- librium stationary state. That is, the distribution is stationary,
tained histogram oP(|u;j|?) vs |uj|%/T; for i=10 with T;  but there is a flow of enstrophy. FigurébB displays a semi-
=218 The Maxwell distribution is approximately obtained logarithmic plot of a numerically obtained histogram of
in this simulation. P(|u|?) vs |u|?/T; for i=16 with T;=2"2% This distribu-
The stationary distributiong5) and (7) express equilib- tion is also approximated at the Gaussian distribution
rium states, in which the average rate of entropy productiorP(|u;|?)<exp(—|u[#T)/T, with T;=2"40~1 This non-
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Q FIG. 4. (a) Averaged energy Ifi|?) vs Ink) for Egs.(3) and

(4) with N=21,6=0.5n=3T;=2"20"17% andd=0.1. (b) Semi-
FIG. 3. (a) Averaged energy Ij(1|*)) vs In(k) for Egs.(3) and  |ogarithmic plot of the histograr®(|u;|?) for i =16 and the Gauss-
(4) with N=216=15n=3T;=2"*"Y% andd=10. (b) Semi-  jan distribution P(|u;|2)=exp(~|u[ZT)/T; with T,=2°. (c) Ex-
logarithmic plot of the histograr®(|u;|?) for i =16 and the Gauss- ponent{, for the structure functions. The dashed line denotes the
ian distribution P(|u;|?) =exp(—|u[¥T)/T; with T;=2"?° (c) EX-  random B8 model {o=Q/3—10gy{1—x+x(1/2)'" 3} with x
ponent{q for the structure functions. The dashed line dendigs =0.12 and the dotted line denotés=Q/3.
=20Q/3.

equilibrium state may be interpreted as a local equilibriumplot of the numerically obtained averaged energkysThe
state, since the probability distribution of each shell has thelashed line denotd$u;|?) =220~ The averaged energy
form of the Maxwell distribution. We have calculated the obeys(|u;|?)ck; ?®. The corresponding energy spectrum is
velocity  structure  functions (|ui|?~k @ for Q  E(K)x(|uj|3)/ki~k 3 That is, the Kolmogorov spectrum
=2,3,...,10. Figure %) displays the numerically obtained is approximately realized in this numerical simulation. Fig-
exponent/o vs Q. The exponent obey&,~ (2/3)Q and this  ure 4b) displays a semilogarithmic plot of a numerically
implies that there are no multifractal characteristics. Theobtained histogram oP(|u;|?) vs |u;|?/T; for i=16 with
Maxwell distribution is a good approximation for the station- T;=2"° and it is compared with the Gaussian distribution
ary distribution. P(|u;|?) < exp w2 T)/T; with T;=2"20"1" For these pa-
Figure 4 shows a numerical result fbi=21, §=0.5, n rameter values, the nonequilibrium stationary distribution is
=3, d=0.1, and temperatur&;=2"20"18 The tempera- far from the Maxwell distribution and has a long tail. There-
ture profile of the heat reservoirs is consistent with thefore, the nonequilibrium stationary state cannot be inter-
Kolmogorov-like solution. Figure @) displays a logarithmic preted as a local equilibrium state. The average entropy



PRE 62 BRIEF REPORTS 7523

production rate is 419.5, which is considerably larger than irbe interpreted as a local equilibrium state and the other as a
the case of Fig. 3. Figure(d displays the numerically ob- nonequilibrium state far from equilibrium. Cascading states
tained exponent, vs Q. The exponeni, deviates from are realized in the nonequilibrium states. For temperature
Q/3 and this indicates a multifractal property of the energyprofiles inconsistent with static cascading solutions, we have
cascading solution. Our exponedy is slightly different  obtained various results, which we have not understood well.
from that of the randomB model {o=Q/3—log,{1—x  For example, if the temperature profile of the heat reservoirs
+x(1/2)1~ 9" with x=0.12 (shown by the dashed cutve is assumed to b& =2"20"1" for the parameter values of
which was obtained by Jensen, Paladin, and Vuldiahfor ~ Fig. 3, we have not obtained the averaged endigy|?)
the original GOY model1). ~2720=1758 byt the logarithmic plot of the averaged energy
To summarize, we have proposed a thermostated GOYsk; is curved and has a steeper slopeiferlO0.
shell model and performed numerical simulations. We have The thermostated model gives a statistical-mechanical
obtained an equilibrium state satisfying energy equipartitiorviewpoint to the GOY model for turbulence. It may also be
and an equilibrium state satisfying enstrophy equipartitionanother useful model for understanding nonlinear and non-
By changing the temperature profile of the heat reservoirsequilibrium energy transport from the viewpoint of chaotic
we have obtained nonequilibrium states, one of which mayynamical systems.
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